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The application of nonlinear approximation theory in strictly convex
normed linear spaces presents special problems owing to the fact that best
approximations are not necessarily unique [16] and that a complete (and
useful) characterization of best approximations is unknown for the commonty
used approximation families. In this paper, we shall study several aspects of
the unicity problem for a class of nonlinear approximation families in spaces
with sufficiently smooth norms. In particular, we wili consider the following
problems:

(1) When does a given element of the space have a unique best approxi-
mation ?

(2) How many elements (in a topological sense) have unique best
approximations?

In [I] Cheney and Goldstein gave a partial answer to (1) for a class of
nonlinear approximating families in a real inner product space. Their resulr
states that if the distance from the point to the approximating set is sufi-
ciently small (a bound is given) then the best approximation is unigue. Spiess
in his thesis [2] improves their bound and gives several numerica! exampies.
Theorem 1 generalizes these results to the case of a normed linear space
with a twice Fréchet-differentiable norm.

Theorems 2 and 3 answer (2) for a class of nonlinear families that include
ordinary rational functions (Theorem 4) and the so-called I-families of
Hobby and Rice [3] (Theorem 5). The basic resnit is that under appropriate
hypotheses the set of elements having unique best approximations contains
an open and dense subset of the underlying space. (A weaker version of tais
result is proved for the I-families.) In Theorem € we show that the number
of minima of the functional || f — » || where fe L,[0, 1] and r runs over the
appropriate set of ordinary rational functions is unbounded as we vary f. We
consider theorems 4, 5, and 6 to be the main results of this paper.

The last portion of the paper is devoted to considering which elements of
the approximating family can appear as best approximations tc elements
other than themselves.

163
Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.



166 JERRY M. WOLFE

In what follows, E and H will be normed linear spaces, S an open convex
subset of £, and A4 a twice Frechet-differentiable map from S to H. Thus,
clements of H are to be approximated by elements of A(S) = {A(s)] s € S}.
Moreover, H will be assumed to have a twice Fréchet-differentiable norm.

The first and second (Fréchet or Gateaux) derivatives of a transformation
g at a point x will be denoted by g'(x, -} and g"(x, -, ) respectively. For
convenience the terms Fréchet-derivative and Gateaux-derivative will be
shortened to F-derivative and G-derivative. The elementary facts about these
derivatives that will be used may be found in [4].

Lemma 1. Let N(g) = | gl|" for each g € H with g == 0 where r > 2, and
let h and k be arbitrary in H. Then

(a) N is twice F-differentiable.

(b) Ntg,h)=t|t|"2N'(g h), N'(tg, h, ky =1t |"2N"(g, h, k) and
| N (g i =rlig It
where t is any nonzero real number.

(¢) If F(x) = N(A(x) — f) then F'(x, k) = N'(A(x) — f, A'(x, k)) and
F'(x,h, k) = N'(A(x) — f, A"(x, h, k)) + N(A(x) — f, A'(x, h), A'(x, k)).
Here f'¢ A(S) is arbitrary. :

Proof. Part (a), the chain rule, and partial differentiation [5, p. 685] imply
(). To prove (a) let R(x) = x for each real number x and let B(g) = || g || for
each g € H. Then N(g) = R(B(g)) and by the chain rule N'(g, ) =
rll gl B'(g, k) from which the relation || N'(g, -)|| = r| g|/"1 is clear once
we note that || B'(g, )|| = 1 [4]. Similarly, N"(g, -, -) exists. To finish part (b)
we calculate

N(1g + sh) — N@g) _ ll1g + sh|" — || 1g|I"
N

B ygir

(s/t)
which shows that N'(tg, h) = ¢ | ¢ |72 N'(g, k) by letting s — 0. Similarly,

N'(tg + sh, k) — N'(1g, k)
S

e+

=1|z[2

N'(tg, h, k) = 1151(}

’ ] 4
e V(8T = N8 B
= lim
50 S/t

= [t|"2N"(g h k). Q.E.D.
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APPROXIMATION IN SMOOCTH SPACES :

Remark 1. The point g = 0 is exceptional since the norm on & is not
G-differentiable there. However, one can verify directly that & is once F-
differentiable at 0 and is twice F-differentiable at 6 if » > 2. If r = 2 N may
fail to have two F-derivatives at 0, though in any case it is twice G-differen-
tiable there.

We now consider the problem of determining when a locai minimum z of
the functional F(x) = N(4(x) — f) is a global minimum. We shall follow
the approach of Spiess [2] and consider first the problem restricted to a ray
through z in a fixed direction k. The giobal problem is then handled by
considering all such rays.

ForzeSandke Ewith| k|| = landf¢ A{5)given,let/, , ={xeS |~y =
z -+ M for some A reall, T,, ={xe/, |l Alx) — A(z)) <2 A(z) — f|},
pp = infoer N'(A(x) — f, A'(x, k), A'(x, k)j and

B;, = sup || A"(x, k, k)|,

xeTy 3

We shall assume that the quantity j| 4(x) — A(z)| increases monotonically as
x moves away from z along 7, ;. More precisely. the function

D(N) = sgn A|| Az + Ak) — A(z))

is assumed to be strictly monotone increasing for all values of A such that
z — Ak € S. Note that this assumption easily implies that T, ;. is convex.

TeeoreM 1. Let F(x) = N(A(x) —f) = || A{x) —F|" for xe§, where
i == 2. Let z and k be as above and suppose tiere is an open neighborhood U of =
such that for all x e U N T, F(x) > F(z) unless x = z. Then if

TRt Y]
| AG) — £ < pp — 13 20

o I3
r;,

z is the unique global minimizer of Fon ¢, ;. .

Proof. Suppose there exists z,e€/,, such that F{z;) < F(z). Clearly,
z; € T, 1 - By Tavlor’s Theorem,

F(z;) =F(z) + F{z,z, — z) + V2F"(»,zy — 2, 2, — 2}
forsomey =tz 4+ (1 — )z, with 0 << < L. Thus,
F(z)) — F(z) = 12F"(y, 2, — 7,2, — Z)
since F'(z, z; — z) = 0. Therefore,

F'(y,zy —z,zy —2z) = W3F"(y, i, k) <0
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for some real number W, so that

0= F'(p, k, k) = N'(A(p) 1, A'(y, k), A(3, K)) + N'(A(y) -1, A"(y, k, k))
= pr — | NAY) — 1. A"(y, k, k)]
= e — | N'(A(y) =, ) -1 A"(p, k, k)|
= p — B || A(y) — [t = ().

But [[A(y) —f|| < A(y) — AQ@)I + 1 4(z) — fIl <3 A(2) — fIl (Note
thaty e T3, ;).

Hence (%) = py — rB3™ || A(z) — fI= >0 since || A@) — /1| < py.-
Thus we have a contradiction. Q.E.D.

The following corollary is immediate from Theorem 2.1.

COROLLARY 1. Suppose z< S and U is an open neighborhood of z such
that F(x) > F(z) for all x € U unless x = z. Assume that for each k + 0, the
SJunction @A) = sgn A - || A(z -+ Ak) — A(z)|| is strictly monotone increasing.
Then if || A(2) — f|| < p = infyy_y pr, Z is the unique global minimizer of F
on S.

ExamprLe 1. Let E = 8 = R (the set of real numbers), H = R? with the
Euclidean norm and inner product [, -]. Let # = 2 and define 4 : S - R? by
A(x) = (x, x?). Finally, let /' = {(0, f2)}.

Then [4(x) — f, A(x) — f] has a relative minimum at z =0 if £, < 1/2.
Also, the formulas 4'(x, k) = k(1, 2x) and A"(x, k, k) = k%0, 2) for ke R
are clear. Thus, || A'(x, k)2 = (I + 4x?) k% and || A"(x, k, k)|* = 4k* so that
B, = 2if | k| = 1. We also have that

sgn A || A(z 4+ M) — A(z)] = sgn A~ | A |- k|- 1+ X%k2
— k- AVI T

which is clearly strictly monotone increasing for & == 0.
N(g) = [g, g] for all g € H and by direct computation N'(g, #) = 2[g, k]
and N"(g, h, h) = 2[h, k). Hence,

N"(A(x) — f, A'(x, k), A'(x, k)) = 2(1 + 4x?) k®
which implies that u, = 2 for | k| = 1. Then if

14Q) — /1l = 1521 < 13 () = 1/6

A(0) is the unique best approximation to fin A(S).
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Ths following application of Corollary 1 generalizes a result of Cheney and
Goldstein [1].

Examprs 2. Let T be a compact Hausdorff space and m a regular Borel
measure on 7. Suppose {vy ,..., 1,} 1s an independent subset of C(T') (tne resi
valued continuous funct1ons on I') with the property that each nonzero g in
span {1y ,..., v} is such that m{t | g(r) = 0} = 0.

Let /: R — R be twice differentiable and satisfy M = f'(s) =« >0 ané
1 f(s}] < vyforallse R (e.g., f(s) =s + arctan (s}}. Let o(*) = (v, (e 1'3
and for x & R, let [v(-), x] denote the generalized polynomial 3. lxmx 3
Note that the hypotheses imply that [[[2(-), x]]is a norm on R,

Define 4 : R* — L (T, m), p > 2 by A(x) = f([v("), x]) and let

N(i) = fT R dm

foreach ze L, (T, m). We then have the formulas A'(x, & = f'(To("), xDiz(-), k]
and  A"(x, k, k) = f'([v("), x]) [¢(), k2 from which the esiimate
B = supy || A"(x, k, k)| < yK is easily obtained where K = (m{T)}"/*.
maXer || 0(¢)|? where the usual Euclidean norm is being used for elements
of R”.

For each fe T, A(x + h)(t) — AC)(@) = f([o(2), x + A — F (o), xD) =
ey, x + 0:D[e(r), 1] where 0 << §; << 1 using the mean value theorem.
Therefore,

1l

1A+ 1) = A = [[ 1/, b + 8AD1? - (00,17 dm] = o]

where 8 > 0 is such that ||[¢(7), A]} == B 4| for all # ¢ R*. Moreover, if we
define i {A) = || A(x 4+ M) — A(x)||” = N(A{x + Ak) — A(x)) where k& = {,
we have by direct calculation and the mean value theorem that

by Q) = NG + Ne) — AG), A'(x + M, &)
= Ap [ Qe x A+ KD« £ (@), x -+ D) - [0, K
L), K17 1S, + kD P o

(see Lemma 4) which shows that the function sgn A - | 4{x + Ak) — A{x)] is
strictly monotone increasing.

Let D={x:[|Ax) —A@)| <2||Az) — g} and 2 ={k: | k|| =1}
where z € R* and g e A(R") are arbitrary. D is clearly closed and is aiso
bounded since if x e D, thenof || x — z || <1 Alx) — A2) < 2|1 4(z) — g .
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It is also easily seen that the map (x, k) > N"(A(x) — g, 4'(x, k), A'(x, k)) =

p(p—1[r[A) — g 172 f([o(2), xD? [v(t), k]? dm  (see Lemma4) is
continuous and positive for each (x, k) € Dx£2. Hence

po= inf N"(A(x) — £, A'(x, k), A'(x, k)) > 0.

IIkl[=1

Finally, we note that if z is not itself a minimizer of F(-), then F takes on its
minimum at some point z, in the interior of D and we conclude that if
|| A(zq) — g Il < (u/pyK)*/»~1 1/3 (note that this number is less than or equal
to the number p; of Theorem 1 for each k 5% 0) then z, is the unique global
minimizer of F on R

Thus we have an example of a class of nonlinear approximating families in
LT, m), p > 2, with the property that if a point is sufficiently close to the
approximating set it has a unique closest point in the set.

We now consider the problem of determing the topological size of the set
of elements of H possessing more than one best approximation in A(S). We
shall need the following standard definition.

DermviTioN 1. A subset M of a normed linear space £'is called approxima-
tively compact if for each feF and each sequence {m,} C M such that
1 f — my || — inf,ea || f — m || there exists a subsequence {nzkj} and an
element m* € M such that || my, — m* | 0.

Lemma 2. Let M be a approximatively compact subset of a normed linear
space H. Suppose x € H has m e M as its unique closest point in M and let
{x:} be any sequence converging to x and {m,} any corresponding sequence of
closest points in M. Then || m;, — m|| — 0.

Proof. See [6, p. 388].

Notations and Assumptions. Unless otherwise stated the following notation
and assumptions will be in force for the remainder of this paper. The symbol £
shall denote a fixed normed linear space, S an open subset of E, and 4 a
twice F-differentiable map from S to H where H is a strictly convex normed
linear space with a twice F-differentiable norm. In addition it shall be assumed
that A(S) is approximatively compact and that the maps x — A"(x, -, -) and
g— N"(g, -, -) are continuous on S and H ~ {0} respectively where

N(g) =lglr

for some r = 2.
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TrEOREM 2. Let a map F be defined by F(f,3) = N(A(y} ;” r"e 4,
¥ €8, and let yo € S and f, € H be fixed. Assume that A= exisis on a {relativ
open neighborhood of A( y,) and is continuous ai A{ y,) and that

anf FO(fy, v, ke, by = >0

Whll=1

(the differentiation is with respect to y). Then if A(yy) is the unigue best approxi-
mation to fy from A(S), there is a neighborhood V of fy such that [ has a urnigue
best approximation in A(S) for each fe V.

Progf. Clearly, A(S) being approximatively compact implies that each
fe H has at least one best approximation in A{S5). Suppose the theorem is
false. Then there exists a sequence {f,} such that £, — £ and such that each
F» has at least two distinct best appro‘umat‘ohb in A(S), say A(y. ang
A{y,)). By Lemma 2, {4(y,)} and {4(y,"}} converge to A4(j,), and so by
continuity of A tat y,, v, — ¥, and 3, — ;.

Consider the map (f,y)—>F"{(f,r. -, 3= N4y — £ A"y, 0 +
N"A(y) — f, A (p, ), A'(y, ) from HXS — B(E, B(E, R)) Where B(u, 3
denotes the set of bounded linear transformations from the normed linear
space £'to the normed linear space G. This map is easily seen to be continuous
so that given € > 0 there exists a 3{¢) > 0 such that if

1y — vl +ilf—fll < (e,

then | F'(f, v, k, k) — F"(fy, %o, k, k)| << e for all & such that | £ = 1. Let
e=n/Z, w={yeS:|y— yl <6(e)/2}, and

U={feh:lIf—fHl <2}

Then for all (f, ) e UXW, F'(f, 3, k. k) = n/2 > 2 for cach k satisfying
| &ll = 1.

Since f,, = f3, Yo —> Vo » and y, — ¥, we may assume that for all , (/,,, 37,
and (Jn,y,,) lie in UXW. Now F(f,,, v») = F{(f. .¥,) and so by Taylor’s

Theorem 0 = F\fns}n) F(fn:}n)—F(fnan:Jn }rzr,n ynl) v
{1/2) F”(f,ﬂ 2 Zy V0 — Vn's Y },,’) for some z between v, and y,. Now,
Flfn. v yn — ¥,) = 0since y,, is a local minimizer of ¥(f, , -3in S, and so
0 = F(.fn ,J’n) - F(fn 9.)’n,)
= Al
| yn — 22"l
1

v Yn — yn, Yo — yn, \ -
=z F s Zy T TR 7 I/A)O
2 (f Hyn — Vn H “yn — X IE

since z € W by convexity and f,, € U. Thus we have a contradiction. Q.E.D,
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Remark 2. We note here for later use that Theorem 2 is valid even when
S is not open in E provided that the point y, lies in the interior of S. Then the
condition N'(A(yy) — f, A'(yy, h)) = O for all / € E is still necessary and the
proof is the same.

The following concept of a “normal” element of A(S) is not only useful
for the problem at hand, but also plays a basic role in the question of which
elements of A(S) can appear as best approximations to elements of H ~ A(S).

DeriNiTioN 3. (1) A point A(x) € A(S) is called normal if 4~ exists on a
neighborhood of A(x). is continuous at A(x), and A’(x, -) is one to one. (2)
NP will denote the set of points having at least one normal best approxima-
tion.

LeMMA 3. Let M be an approximatively compact subset of a sirictly
convex normed linear space E. Suppose there exisis a set SC M with the
Jollowing properties:

(a) The subset T ={xe E~M|Py(x)NS % @} isdense in E~ M
where Py/(x) is the subset of best approximations of x.

(b) For each xoc T, Ae(0, 1), and mye Py(xy) NS there is a neigh-
borhood Vy(x,) of Axy -+ (1 — A) my such that for each x € Vy(x,) , Py(x) is a
singleton.

Then the set U of all elements in E having unique best approximations in M
contains an open and dense subset of E.

Proof. Let x4 be in T and m, in P,(x,) N S. Using (b) choose for each
A€ (0, 1) a neighborhood V,(x,) of x; = Ax, + (I — A) my with Vy(x,) C U.
Then let ¥V, =U Vy(x,) where the union is taken over all x,e€ 4,
m1y € Pr(xy) NS, and A€ (0, 1). Finally, let V" = V; U M° where M° denotes
the interior of M. Clearly V is an open subset of H so it suffices to show that
V is dense.

Let x be arbitrary in £ ~ M. Then there is a sequence {x,} C T converging
to x by (a). But by definition of V, there exists for each positive integer
na y, eV such that ||y, — x, || < 1/n. Then y, — x and so V is dense in
E ~ M. Similarly, if x € M ~ M? then each neighborhood of x intersects V.
Thus there is a sequence in ¥ converging to x and so Visdensein £. Q.E.D.

THEOREM 3. Assume that NP is a dense subset of H and that
inf N(A(y) —f, 4'(3, k), A'(y,k)) > 0

{l&li=1

whenever A(y) e NP and f = A(y). Then the set U of all elements in H having
unique best approximations in A(S) contains an open and dense subset of H.
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Proof. We may assume that H £ A(S). Let fe NP N (H ~ A(S)) and let
A(y) be any normal best approximation of f. By the strict convexity of H.
each /5 = A/ -+ (1 — A) A(y) where 0 << A <1 has A(y) as its unique best
approximation [2, p. 6] and the following conditions hoid: 0 = F'(f,, v, &
and O <F'(fi.3 k k) = NMA(p) —f), A"(y, k. &)y + ’”’:\(AU’) —7h
Ay, k), A (3, k) = N2 AN(A(y) — f, A"y, &, k)5 + N4 — £, A' (3. k).
Ay, k).

Since infjy; N(A(y) —f, A'(y, k), A'(y, k)) >0 and since the abovs
conditions also hold for A = 1, it follows that inf,, - F'(f, y. &, k) > 0 for
each 0 << A << 1. Hence by Theorem 2 there is an open neighberhood
V{f, A, 3) about each f, which is contained in U. Thus by Lemma 3 the
theorem holds. Q.ED

LemMA 4. Let (X, m) be an arbitrary measure space. For p > 2, let Ni-)
denote the map [ ||f|b = [y | f|* dm. Then N is twice F-differentiable on
L(X, m) and the formulas N'(f,k) =p [ f' f1*2kdm and N'(f, k. 1) =
plp — D) [ | f1272 hkdm hold, where f. k, and k are elemenis of L (X, m).

Furthermore, the map f— N"(f, -, -) is continuous everywhere. (See [7} for
proof)

-

Theorem 3 will now be applied to two important types of nonlinear
approximating families. The first of these is the set of pelynomial rational
functions on [0, ] with fixed degree of numerator and denominator, and
the second is the class of I-families whose study was initiated by Hobby and
Rice in 1967 [3].

DEFINITION 4.
RO, 1l ={plq:p=ay + = Fax", g=">by — - +b,x",
with g{x) > Ofor all x € [0, 1]}. (We shall denote this set more simply by &}
DermvTioN 5. Let A7 = { p/g € RE: dim( pQ — yP) = m -+ a +— 1}
where P = span{l, x,..., x"}, and @ = span{l, x,..., x!. Elements of .+  are
£

called normal and it is shown in [8] that they comprme the normal elements o
R,," in the sense of Definition 3 using the maps defined below.

Remark 3. Itis known that p/g € .47 if and only if
min{n — op, m — oq} = U

and p and ¢ have no common factors where the symbol ¢ denotes “degre
of” [9].
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It will be shown in Corollary 2 that the elements of .#" are precisely the

ones that can appear as best approximations to functions not in R”.
Let S ={y =(aq,..., 4, , by ,..., by) € R*I7+L;

1 +byx + -+ b,x™ >0 for all x [0, 1]} and define 4 : § — L,[0, 1] by
A(y) = (ay + - + axM/(1A + byx + - 4 b,x™). Then A(S) = R? since
ifr =(ay + = + a,xM{by + -+ + bpx™) is in R?, then by, = 0, so r has a
representation with b, = 1.

THEOREM 4. The set U of functions in L,[0, 1], p > 2, having unique best
approximations in R,," contains an open dense subset.

Proof. S is easily seen to be open and A(S) is weakly closed and hence
approximatively compact [I0 and 6, p. 368]. Also, each element of
A(S) ~ R*7! is normal in the sense of Definition 3. A4 is twice F-differentiable
on S with A’(y, h) = 4/g%(y) and

24 g(h)y — 1
g(y) q(»)

where s € R+ A = p(y)(g(h) — 1) — p(h) ¢(¥), and where

A"(y, h, h) =

pu) = vy +iyx + 0 F Uy x® and g) =1 4 Uy 0x + 0 A Upyp 1 X”

for u = (uy ,..., Uy nyq). From the second formula it is easily established that
the map y — A4"(y, -, ) is continuous.

Suppose f = A(y) and A(y) € A". Then for k £ 0 in R™+**1 we have that
the (Lebesgue) measure of {x : A'(p, k)}(x) = 0} is zero since A’(y, -) is one-
to-one so that 4’(y, k) is a nonzero rational function on [0, 1]. Thus by the
continuity of the map k — N"(A(y) — f, A'(», k), A'(y, k)) and the compact-
ness of {k: || k| =1}, infyyy N(A(y) — 1. A'(y, k), A'(y,k)) > 0. Also,
NP = L]0, 1] ~ R%7% as remarked above and so is dense in [1. Hence the
result follows from Theorem 3. Q.E.D.

The I-families of Hobby and Rice can be described as follows: A function
v(t, x) from T x [0, 1] to the real numbers is given, where T is a subset of the
reals. For a fixed positive integer n, consider the family

N
F=:f(x) =Y awy(t;,x): a;is real, and ¢, € T for all i}.

=1

Then given g € L,[0, 1] we seek a best approximation to g from F. However,
since F is not closed, in general [11, p. 43] it is necessary to consider the
closure of F. If T is compact (and if y(, x) satisfies certain conditions given
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in Theorem 35 below) then it is known that the closure in L,[0, 1] for any
I <p < oois given by
ki k ) i
N Gy, x) Y, (my+ 1) < Nand ;e 7 forall 7t
i=1j=0 i=1 )

where V{1, x) denotes (&/y/0t9)(t, x). (See [8] or [9] for example).

Until recently, the parameterization of F has presented great difficulties
since the natural parameterization of elements of F by the a;’s and #;’s does
not extend to F in any simple way. However, in [12], Barrar and Loeb have
introduced a parameterization of F that can be easily extended to F. To
parameterize F, define a map 4 : D — C[0, 1] by

‘4(61 seves O s -’11 3eees an)(x) = ‘A(Ci a)(x)

1 » clzn—l 4 .. + Is

' n
2aiJg 2% + gzt 4 - — g,

iz, x) dz

where D = {(¢y ,.., Cp » Gy 5oy @) = (€, 8) € R¥ | 2% - @,z 4- -+ L g, has
all its roots in 7} and where K is any contour in I/ with 7 in its interior. Now
D is a closed subset of R*" and so for differentiation one can extend 4 to the
open set V = {(c,a)e R?* | z" + aq;z" ' 4+ -+ + a, has all its roots in the
interior of K}. Since y(z, x) is real valued for real z it follows from the residue
theorem and Schwarz’s principle of reflection that 4{c, aj(-) is real valued for
each {¢,a)e V. It is a lengthy but straightforward exercise (see [14]) to
verify that the map A satisfies all the hypotheses of Theorem 3. However, D
is not open in R*" so that the usual orthogonality condition for a best approxi-
mation (i.e. N'(A(x) — f, 4'(x, b)) = 0 for all 1 € R*") is no longer necessary
in all cases. [t is clear, however, that the condition is still necessary whenever
the best approximation lies in the relative interior of the original family £
Thus using Theorem 2 (see Remark 2) and the technigues of Theorem 2 we
have the following weaker version of Theorem 4.

THEOREM 3. Lef T be a compact subinterval of the req! line R and y{z. x}
a function on T X [0, 1] to R satisfying:

(1Y For some region U of the complex plane containing T the function
v(z, x) is defined and analytic in z for each fixed x € {0, 1] and real valued for
real z.

(2y  Each function yV¥z, x) = (O'y[0z)(z,x) j =0, 1...., m — 1 is jointly
contiimous in z and x on U x [0, 1].
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(3) If any function of the form

p My ¢ o L
Yo Y ay it x)+ Y Y [agy (A, x) + ayD @, X))
-1 =0 i=p1 j=0

is zero for all x, where Y5 _, (m; -+ 1) + 2 Z(L-I:p a(my 1) <2, t;eT, and

q i
Im(},) # 0, then Y Y layl=0.

=1 j=0

Let W denote the set of functions possessing a best approximation in
F = {Zﬁil ay(t;,x):a;isreal and t; € T° for all i = 1,..., N}. Then the set of
Sfunctions in W having a unique best approximation in F contains a subset that
is at once open and dense in W in the relative topology and open in L0, 1] for
2<p< oo

Remark 4. For the choice y(f, xX) = e all the assumptions are obvious
but (3). For a proof of (3) in this case see [10] and [11, p. 45]. Also using the
results of Barrar and Loeb in [13] it is easy to show that Theorem 5 also
applies to the exponential family for the choice 7' = (— oo, o).

We shall now consider the question of how many best approximations an
element may have. For simplicity we shall restrict our attention to R,
considered as a subset of H = L,[0, 1]. The proof of the following lemma is
quite elementary and has thus been omitted.

LemMA 5. Let Ly and M, be closed subspaces of the Hilbert space H and
let u and v be arbitrary in H. Then there exist x e u + Lyand y e v + M, such
that | x — y || = dist(u + Ly, v + My). Moreover, {x — y,z] =0 for any z
of the forms — y withsev + Myort —x withteu - L.

LemMA 6. Let M;i =1, 2,... be a sequence of finite dimensional subspaces

of the Hilbert space H such that (1) M; N (Z;: M) =(0) for all i =2,3,...
Let r; € M; be given for i = 1, 2,... where r; %= 0. Then for each n,

L,

f

ﬂ (r: + M)
i=1

is nonvoid.

Proof. The proof is by induction. For # = 1, there is nothing to do, so
assume L, = ﬂle (r; + M) is nonvoid where n > 1. This set is a linear
manifold in H and in fact it is simple to check that L,, = -+ M+ - 0 M+
where fis any element of L, . By Lemma 3, there exist xe S = r,,,; + M,

and ye L, such that || x — y| = dist(S, L,) and x — y is orthogonal to
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everything of the form z — y where ze L, and w — x where we S, But
{z—yizel)})=M* N nNnM,> and {w —xiweS = M,.,. Thus,
x—ye(My ) =M, andx —ye(My NN MY =M+ + M,
so that x —pyeM, O(M, ~ -+ M,) = (). Thus x =y and L, ; =
Nily (r; + M;Y) is nonvoid. E

TarorReM 6. Let H = L,0, 1] and let . =p,/lq, C R} .0 =1,2,.., bz
such that p, and q, have no common factors, deg g, = m, deg p, < < m on
q; and g have no common faci‘ors unless j = k. Then for each v =1, 2,,.;,
there is an [, € H such that v, ..., r, are all iocal minima of the functional
Sy — - I defined on R, .

Proof. By Remark 3, each r, is normal so that it is sufficient to show that
for some f, xy ,..., X, are local minima of the functional N(x) = | A(x) — /, |?
where 4(-) is the parameter mapping introduced earlier and xy ...., x, are the
unique parameiers with 4{x;) = r; . Now x is a local minimum of N(x} if

(1) (D N'(x, h) =[Ax) —f,A(x, )] =0forall ke E””f"“

(2 (AIDN"(x,hh) =[A'(x, h), A'(x, B} + [A() — f, A"(x, &, 7)) >
for ali 2 with || ]| = 1. Using the calculations in Theorem 4 and [9] we note
that for each v, A'{x,, R"*"*Y) = P, ./a.2 ={p/4.2 | p is a polynomial of
degree <{m + ntand A”(x,, S ePo, gl Let M, =P, g le =12

Ciaini. Y (3) pilg® =3 s pJ/g] Pr € Poen £ = 1,..., [, then p, = 0.

Proof.  Using (3) we get (4) p; (].—[A 1 9k°) =4’ (Z —1:’ r.[ 1 ki G ) Then
g divides the left-hand side of (4). But ¢,° is relatively prime to 1—[1-—11 G:° 50
we must have that g2 divides p,. But deg(qﬁ) =3m > 2m + n = deg; 1»
which implies that p; = 0. Thus, (M; NY; - 1 M;) = (0) and by Lemma 6,
each IV, Ly = { !L  (r; + M) is nonvoid. But if fe L then since

37 {2
P2m+fn/Qz' - Pm.—]—n/‘qi

we have that (1) and (2) are satisfied so that || A(:} — f|* has x; ,..., xy &s
isolated local minima. $.ED.

Remark 5. A natural question now is whether or not for some ' ,[0, 11
the function || f — - || has infinitely many minima in R}, . It is known that
this is impossible in the case m = 1 [2] but the general case is still an open
question to the best of our knowledge.

For the remainder of this paper we shall consider the reverse problem of
approximation theory. That is, if H is a normed linear space and A a subset
of H, then given an element m € M, does there exist a point p == m such that
m is a closest point to p in M?

In what follows, the setting will be the same as for Theorem 3. That is,  is

640/12/2-0
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strictly convex with a twice F-differentiable norm, 4 : S — H is twice F-
differentiable, A(S) is approximatively compact and the maps x — 4"(x, -, -)
and g — N"(g, -, *) are continuous.

THEOREM 7. Let x €S be given and suppose that

(a) A(x) is normal.

(b) A'(x, ') has closed range in H and is not onto.

(¢) The map g— N'(g, ) is onto H*.

(d) infjye N'(A(x) —f, A'(x, k), A'(x, k)) >0  whenever [+ A(x).
Then there exists | # A(x) such that A(x) is the unique best approximation of
fin A(S).

Remark 6. Using Lemma 4, it can easily be shown that hypothesis (c)
holds for any L, space with oo > p > 1.

Proof of Theorem 7. By (c) and (b), pick g € H such that | N'(g, )| =1
and N'(g, h) =0 for every h = A'(x, k), ke E. Let f= A(x) — g. Then
f 7= A(x) and satisfies the condition F'(f, x, k) = N'(A(x) — f, A'(x, k)) =0
for each ke E. Letting f, = Af + (I — A) A(x) for each Ae[0,1], and
proceeding exactly as in the proof of Theorem 3, we have that F'(f, , x, k) =0
for each k € E and infiy ., F'(f, x, k, k) > 0 for A sufficiently small by (d).
Thus, for A sufficiently small and positive, x is a relative minimum of the
functional F(f,, ') defined on S. By the continuity of A~' on a relative
neighborhood of A(x), A(x) is a relative minimum of the functional N(- — f)
defined on A(S). Thus for perhaps still smaller A, A(x) is the unique best
approximation to fin A(S). See [9]. Q.E.D.

For the following result we shall only assume that H has a once F-differen-
tiable norm and that the map A4 is once F-differentiable on S. N will be
defined by N(g) = q||” where r > 1 and g € H.

THEOREM 8. Suppose p € A(S) satisfies the condition that
span \J) A'(x, E)

xeA4~1(p)

is dense in H. Then p cannot be a best approximation to any ¢ A(S).

Proof. Suppose p were a best approximation to f¢ A(S). Then for each
x € S satisfying 4A(x) = p, x is a global minimum of F(f, ©) = N(A(*) —f).
Thus the necessary condition F'(f, x, k) = N'(A(x) — f, A'(x, k)) = 0 for all
k € F holds for any such x. But then N'(p — f, 2) =0 for every
2 € Unea14(0 A'(x, E) and hence for every g in the linear span of this set. But
then, by denseness, N'(p — £, ) = 0. However, | N'(p —f, )l =r||p — f|
which implies p = f—a contradiction. Q.E.D.
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We will now apply Theorem 8 to a generalized rational family that includes
R? as an example and to the I-families defined earlier. Alternate proofs for
Theorems 9 and 10 may be found in [9] and [11, p. 45] respectively.

LemMa 7. Letr X be a compact Hausdorff space and auppme p e C{X)isone
to one with {plle < 1. Then span{lf{1 — Ap)i Ac{—1. 1)} is uniformiy
dense in C(X).

Proof. Let S be any compact subset of [—1, 1]. Using a resuit of Achiessr
[15, p. 254] it is simple to show that span {[1/(1 — Ax)]; A| < 1} is dense in
C([—1, 1) and hence also in C(S) (using Tictzes’ Extension Theorem}.
Since X is compact and [—1, 1] is Hausdorff it follows that p~* is continuous
on p(X) =S given the relative topology. Thus for every ge C(X), g - p~ is
continuous on S. Then given ¢ > 0, pick #, x;,..., o, and A, ,..., A, with
L1 < 1 so that max, ,es| g pMs) — X, auf{l — hp)| < e. Then
max,.y | gx) — i a/(1 — Xp(x)) | < € and we have finished. Q.E.D.

Remark 7. The hypotheses of Lemma 7 imply that X is homeomorphic
to a subset of {[—1, 1]. Thus the possible domains in Theorem 9 below are
implicitly limited to such compact sets X.

For the following result let X be a compact Hausdorff space, u a regular
Borel measure on X, {g; ,..., £,} and {#y ,..., i,,} linearly independent subseis
of (X}, © = spanfh, ,..., b}, P =span{g;,.... & and R ={plg: ps P,
geQ,and g(x) > 0forall x € X}. Let S = {(ay yoees Tn y §q 5eees Ot 2 B0 —

-+ bmizm(x) >0 for all xe X} and define 4:5— Lf{X, uj, 1 >1, by

A(al s Qp s b b"n) = (alol + o+ ay, g?’-)/(‘%l",-1 R 1;7;'7) I etting
S_\ala Gn:blz oy m)> algl_l“ R Y S aﬁd(‘Ablﬂl - -

by, we then have by a simple calculation that A'(s, R*+™) = (pQ + gP /ot

THEOREM 9. Assume that there exists pye P such that p(x) > G for aif
x € X. Suppose that re Rt is given and let T, ={ge Q : 9(x) >0 for all
x € X and there exists p € P such that plq = ru alniost everywhere}., Then if' 1
contains elements q, and g, suchk that q,jq, is one-to-one, r is noi the best

approximation to any element fe L(X, p) except itself for 1 > 1.

Progf. Let p =q,/q; . We may assume || pi] o0 < 1. Then for every
fAl <1, gy — Agy € T, since if p, € P and p, € P are such that

Dildy = Palgy =7,

then p,/g, = (p1 — Ap2)/(q1 — Agy) is equal to r also. Let x; € 5 be such that
Axy) = p,/q, . Since A'(x,, R*t™) = p,0 + 9,P/q,*> we have that

(Polq) - (1 — Apy™ = pol(qy — Agz) & 4'(x, R™)
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for each |A| << 1. By Lemma 7 and the fact that py(x)/q,(x) > 0 for all
xe X, span{( py/q)) - (1 — Ap)™t: | A| < 1} is uniformly dense in C(X) and
hence dense in L,(X, m) for ¢ > 1. Thus the result follows from Theorem 8.

Q.E.D.

CoROLLARY 2. A nonnormal element of R0, 1] cannot be the best
approximation to any f< L]0, 1] other than itself for t > 1.

Proof. If re R0, 1] is not normal then by Remark 2, there exist
relatively prime polynomials (or they may be constants) p and ¢ such that
op <n—1, d¢g <m— 1, r = plg, and g{x) > 0 for all x. Then
[ p(d 4+ x)]/[g(1 + x)] and so T, contains the elements g and ¢ - (1 + Xx)
whose quotient p = 1/(1 -+ x) is clearly one-to-one on [0, 1] with || p ||, < 1.

Q.E.D.

We also have the following application of Theorem 8.

I;THEOREM 10. Consider the family F = {ZL o ayNt;, x) t € T and
> (m; + 1) << N} where T is a compact subset of the real line, N a fixed
positive integer and y(t, x) satisfies the hypotheses of Theorem 5. In addition,
assume that span {y(t, x)| t € T} is uniformly dense in C[0,1}. Then if an
element f < F is not normal (using the parameter map A of Theorem 5) it cannot
be the best approximation fo any element of L,[0, 1] other than itself for p > 1.

Again we shall not present a complete proof here, but mention that if fis
not normal then one discovers by direct calculation that

U 4G B0 |1 T)

xed™H(f)

from which the result is obvious.
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